Gene duplication and co-evolution of G1/S transcription factor specificity in fungi are essential for optimizing cell fitness
نویسندگان
چکیده
Transcriptional regulatory networks play a central role in optimizing cell survival. How DNA binding domains and cis-regulatory DNA binding sequences have co-evolved to allow the expansion of transcriptional networks and how this contributes to cellular fitness remains unclear. Here we experimentally explore how the complex G1/S transcriptional network evolved in the budding yeast Saccharomyces cerevisiae by examining different chimeric transcription factor (TF) complexes. Over 200 G1/S genes are regulated by either one of the two TF complexes, SBF and MBF, which bind to specific DNA binding sequences, SCB and MCB, respectively. The difference in size and complexity of the G1/S transcriptional network across yeast species makes it well suited to investigate how TF paralogs (SBF and MBF) and DNA binding sequences (SCB and MCB) co-evolved after gene duplication to rewire and expand the network of G1/S target genes. Our data suggests that whilst SBF is the likely ancestral regulatory complex, the ancestral DNA binding element is more MCB-like. G1/S network expansion took place by both cis- and trans- co-evolutionary changes in closely related but distinct regulatory sequences. Replacement of the endogenous SBF DNA-binding domain (DBD) with that from more distantly related fungi leads to a contraction of the SBF-regulated G1/S network in budding yeast, which also correlates with increased defects in cell growth, cell size, and proliferation.
منابع مشابه
Gene Family: Structure, Organization and Evolution
Gene families are considered as groups of homologous genes which they share very similar sequences and they may have identical functions. Members of gene families may be found in tandem repeats or interspersed through the genome. These sequences are copies of the ancestral genes which have underwent changes. The multiple copies of each gene in a family were constructed based on gene duplicati...
متن کاملBioinformatics Genome-Wide Characterization of the WRKY Gene Family in Sorghum bicolor
The WRKY gene family encodes a large group of transcription factors that regulate genes involved in plant response to biotic and abiotic stresses. Sorghum is a notable grain and forage crop in semi-arid regions because of its unusual tolerance against hot and dry environments. We identified a set of 85 WRKY genes in the S. bicolor genome and classified them into three groups (I–III). Among the ...
متن کاملRegulation of gene expression in tissue engineering, differentiation and bone regeneration of ossifying stem cells
Cells that make up the bodychr('39')s tissues are usually three-dimensional architecture, the threedimensional culture system enables cells to create natural and in vivo interactions which is an ideal environment for 3D (Three-dimensional) cell growth and issues such as exchange of similar food exchanges inside Capillary in living tissue. In tissue engineering discussion, cell scaffolding is hi...
متن کاملIntraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor
Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after per...
متن کاملP-30: The Investigation of Transcript Expression Level of Mitochondrial Transcription Factor A (TFAM) during In Vitro Maturation (IVM) in Single Human Oocytes
Background In vitro maturation (IVM) of human oocytes has acquired increasing attention in infertility treatment with great promise. This technique is an alternative conventional in vitro fertilization-embryo transfer (IVF-ET), and can be reduced the side effects of gonadotropin stimulation such as ovarian hyperstimulation (OHSS). Oocyte maturation is a complex process including cytoplasmic and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2017